A general differentiation theorem for multiparameter additive processes
Ryotaro Sato
Colloquium Mathematicae, Tome 91 (2002), p. 143-155 / Harvested from The Polish Digital Mathematics Library

Let (L,||·||L) be a Banach lattice of equivalence classes of real-valued measurable functions on a σ-finite measure space and T=T(u):u=(u,...,ud),ui>0,1id be a strongly continuous locally bounded d-dimensional semigroup of positive linear operators on L. Under suitable conditions on the Banach lattice L we prove a general differentiation theorem for locally bounded d-dimensional processes in L which are additive with respect to the semigroup T.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284354
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-10,
     author = {Ryotaro Sato},
     title = {A general differentiation theorem for multiparameter additive processes},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {143-155},
     zbl = {1016.47011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-10}
}
Ryotaro Sato. A general differentiation theorem for multiparameter additive processes. Colloquium Mathematicae, Tome 91 (2002) pp. 143-155. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-10/