n-functionality of graphs
Konrad Pióro
Colloquium Mathematicae, Tome 89 (2001), p. 269-275 / Harvested from The Polish Digital Mathematics Library

We first characterize in a simple combinatorial way all finite graphs whose edges can be directed to form an n-functional digraph, for a fixed positive integer n. Next, we prove that the possibility of directing the edges of an infinite graph to form an n-functional digraph depends on its finite subgraphs only. These results generalize Ore's result for functional digraphs.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283777
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-6,
     author = {Konrad Pi\'oro},
     title = {n-functionality of graphs},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {269-275},
     zbl = {0986.05052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-6}
}
Konrad Pióro. n-functionality of graphs. Colloquium Mathematicae, Tome 89 (2001) pp. 269-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-6/