We first characterize in a simple combinatorial way all finite graphs whose edges can be directed to form an n-functional digraph, for a fixed positive integer n. Next, we prove that the possibility of directing the edges of an infinite graph to form an n-functional digraph depends on its finite subgraphs only. These results generalize Ore's result for functional digraphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-6, author = {Konrad Pi\'oro}, title = {n-functionality of graphs}, journal = {Colloquium Mathematicae}, volume = {89}, year = {2001}, pages = {269-275}, zbl = {0986.05052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-6} }
Konrad Pióro. n-functionality of graphs. Colloquium Mathematicae, Tome 89 (2001) pp. 269-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-6/