Generalized Hardy spaces on tube domains over cones
Gustavo Garrigos
Colloquium Mathematicae, Tome 89 (2001), p. 213-251 / Harvested from The Polish Digital Mathematics Library

We define a class of spaces Hμp, 0 < p < ∞, of holomorphic functions on the tube, with a norm of Hardy type: ||F||Hμpp=supyΩΩ̅|F(x+i(y+t))|pdxdμ(t). We allow μ to be any quasi-invariant measure with respect to a group acting simply transitively on the cone. We show the existence of boundary limits for functions in Hμp, and when p ≥ 1, characterize the boundary values as the functions in Lμp satisfying the tangential CR equations. A careful description of the measures μ when their supports lie on the boundary of the cone is also provided.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283814
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-4,
     author = {Gustavo Garrigos},
     title = {Generalized Hardy spaces on tube domains over cones},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {213-251},
     zbl = {0999.42014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-4}
}
Gustavo Garrigos. Generalized Hardy spaces on tube domains over cones. Colloquium Mathematicae, Tome 89 (2001) pp. 213-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-2-4/