The mean value of |L(k,χ)|² at positive rational integers k ≥ 1
Stéphane Louboutin
Colloquium Mathematicae, Tome 89 (2001), p. 69-76 / Harvested from The Polish Digital Mathematics Library

Let k ≥ 1 denote any positive rational integer. We give formulae for the sums Sodd(k,f)=χ(-1)=-1|L(k,χ)|² (where χ ranges over the ϕ(f)/2 odd Dirichlet characters modulo f > 2) whenever k ≥ 1 is odd, and for the sums Seven(k,f)=χ(-1)=+1|L(k,χ)|² (where χ ranges over the ϕ(f)/2 even Dirichlet characters modulo f>2) whenever k ≥ 1 is even.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284180
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-6,
     author = {St\'ephane Louboutin},
     title = {The mean value of |L(k,$\chi$)|$^2$ at positive rational integers k $\geq$ 1},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {69-76},
     zbl = {1013.11049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-6}
}
Stéphane Louboutin. The mean value of |L(k,χ)|² at positive rational integers k ≥ 1. Colloquium Mathematicae, Tome 89 (2001) pp. 69-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-6/