Let ℒ be the sublaplacian on the Heisenberg group Hⁿ. A recent result of Müller and Stein shows that the operator is bounded on for all p satisfying |1/p - 1/2| < 1/(2n). In this paper we show that the same operator is bounded on in the bigger range |1/p - 1/2| < 1/(2n-1) if we consider only functions which are band limited in the central variable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-3,
author = {E. K. Narayanan and S. Thangavelu},
title = {Oscillating multipliers on the Heisenberg group},
journal = {Colloquium Mathematicae},
volume = {89},
year = {2001},
pages = {37-50},
zbl = {0996.43012},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-3}
}
E. K. Narayanan; S. Thangavelu. Oscillating multipliers on the Heisenberg group. Colloquium Mathematicae, Tome 89 (2001) pp. 37-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-3/