Let ℒ be the sublaplacian on the Heisenberg group Hⁿ. A recent result of Müller and Stein shows that the operator is bounded on for all p satisfying |1/p - 1/2| < 1/(2n). In this paper we show that the same operator is bounded on in the bigger range |1/p - 1/2| < 1/(2n-1) if we consider only functions which are band limited in the central variable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-3, author = {E. K. Narayanan and S. Thangavelu}, title = {Oscillating multipliers on the Heisenberg group}, journal = {Colloquium Mathematicae}, volume = {89}, year = {2001}, pages = {37-50}, zbl = {0996.43012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-3} }
E. K. Narayanan; S. Thangavelu. Oscillating multipliers on the Heisenberg group. Colloquium Mathematicae, Tome 89 (2001) pp. 37-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm90-1-3/