Some remarks on quasi-Cohen sets
Pascal Lefèvre ; Daniel Li
Colloquium Mathematicae, Tome 89 (2001), p. 169-178 / Harvested from The Polish Digital Mathematics Library

We are interested in Banach space geometry characterizations of quasi-Cohen sets. For example, it turns out that they are exactly the subsets E of the dual of an abelian compact group G such that the canonical injection C(G)/CEc(G)L²E(G) is a 2-summing operator. This easily yields an extension of a result due to S. Kwapień and A. Pełczyński. We also investigate some properties of translation invariant quotients of L¹ which are isomorphic to subspaces of L¹.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283617
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-2-2,
     author = {Pascal Lef\`evre and Daniel Li},
     title = {Some remarks on quasi-Cohen sets},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {169-178},
     zbl = {0991.43003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-2-2}
}
Pascal Lefèvre; Daniel Li. Some remarks on quasi-Cohen sets. Colloquium Mathematicae, Tome 89 (2001) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-2-2/