Sur la somme des quotients partiels du développement en fraction continue
D. Barbolosi ; C. Faivre
Colloquium Mathematicae, Tome 89 (2001), p. 159-167 / Harvested from The Polish Digital Mathematics Library

Let [0;a₁(x),a₂(x),…] be the regular continued fraction expansion of an irrational x ∈ [0,1]. We prove mainly that, for α > 0, β ≥ 0 and for almost all x ∈ [0,1], limn(a(x)++a(x))/nlogn=α/log2 if α < 1 and β ≥ 0, limn(a(x)++a(x))/nlogn=1/log2 if α = 1 and β < 1, and, if α > 1 or α = 1 and β >1, liminfn(a(x)++a(x))/nlogn=1/log2, limsupn(a(x)++a(x))/nlogn=, where ai(x)=ai(x) if ai(x)nαlogβn and ai(x)=0 otherwise, for all i ∈ 1,…,n.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284290
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-2-1,
     author = {D. Barbolosi and C. Faivre},
     title = {Sur la somme des quotients partiels du d\'eveloppement en fraction continue},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {159-167},
     zbl = {1004.11046},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-2-1}
}
D. Barbolosi; C. Faivre. Sur la somme des quotients partiels du développement en fraction continue. Colloquium Mathematicae, Tome 89 (2001) pp. 159-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-2-1/