On the complexity of Hamel bases of infinite-dimensional Banach spaces
Lorenz Halbeisen
Colloquium Mathematicae, Tome 89 (2001), p. 133-134 / Harvested from The Polish Digital Mathematics Library

We call a subset S of a topological vector space V linearly Borel if for every finite number n, the set of all linear combinations of S of length n is a Borel subset of V. It is shown that a Hamel basis of an infinite-dimensional Banach space can never be linearly Borel. This answers a question of Anatoliĭ Plichko.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284056
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-9,
     author = {Lorenz Halbeisen},
     title = {On the complexity of Hamel bases of infinite-dimensional Banach spaces},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {133-134},
     zbl = {0998.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-9}
}
Lorenz Halbeisen. On the complexity of Hamel bases of infinite-dimensional Banach spaces. Colloquium Mathematicae, Tome 89 (2001) pp. 133-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-9/