We study the geometric structure of a Gauduchon manifold of constant curvature. We give a necessary and sufficient condition for a Gauduchon manifold to be a Gauduchon manifold of constant curvature, and we classify the Gauduchon manifolds of constant curvature. Next, we investigate Weyl submanifolds of such manifolds.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-8,
author = {Fumio Narita},
title = {Weyl space forms and their submanifolds},
journal = {Colloquium Mathematicae},
volume = {89},
year = {2001},
pages = {117-131},
zbl = {0985.53020},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-8}
}
Fumio Narita. Weyl space forms and their submanifolds. Colloquium Mathematicae, Tome 89 (2001) pp. 117-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-8/