We study the geometric structure of a Gauduchon manifold of constant curvature. We give a necessary and sufficient condition for a Gauduchon manifold to be a Gauduchon manifold of constant curvature, and we classify the Gauduchon manifolds of constant curvature. Next, we investigate Weyl submanifolds of such manifolds.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-8, author = {Fumio Narita}, title = {Weyl space forms and their submanifolds}, journal = {Colloquium Mathematicae}, volume = {89}, year = {2001}, pages = {117-131}, zbl = {0985.53020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-8} }
Fumio Narita. Weyl space forms and their submanifolds. Colloquium Mathematicae, Tome 89 (2001) pp. 117-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-8/