Noncommutative Poincaré recurrence theorem
Andrzej Łuczak
Colloquium Mathematicae, Tome 89 (2001), p. 1-6 / Harvested from The Polish Digital Mathematics Library

Poincaré’s classical recurrence theorem is generalised to the noncommutative setup where a measure space with a measure-preserving transformation is replaced by a von Neumann algebra with a weight and a Jordan morphism leaving the weight invariant. This is done by a suitable reformulation of the theorem in the language of L-space rather than the original measure space, thus allowing the replacement of the commutative von Neumann algebra L by a noncommutative one.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283634
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-1,
     author = {Andrzej \L uczak},
     title = {Noncommutative Poincar\'e recurrence theorem},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {1-6},
     zbl = {0979.46042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-1}
}
Andrzej Łuczak. Noncommutative Poincaré recurrence theorem. Colloquium Mathematicae, Tome 89 (2001) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-1-1/