Let R be a subring of the rational numbers ℚ. We recall from [3] that an R-module G is a splitter if . In this note we correct the statement of Main Theorem 1.5 in [3] and discuss the existence of non-free splitters of cardinality ℵ₁ under the negation of the special continuum hypothesis CH.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm88-1-11, author = {R\"udiger G\"obel and Saharon Shelah}, title = {An addendum and corrigendum to "Almost free splitters" (Colloq. Math. 81 (1999), 193-221)}, journal = {Colloquium Mathematicae}, volume = {89}, year = {2001}, pages = {155-158}, zbl = {0948.20032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm88-1-11} }
Rüdiger Göbel; Saharon Shelah. An addendum and corrigendum to "Almost free splitters" (Colloq. Math. 81 (1999), 193-221). Colloquium Mathematicae, Tome 89 (2001) pp. 155-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm88-1-11/