Existence and integral representation of regular extensions of measures
Werner Rinkewitz
Colloquium Mathematicae, Tome 89 (2001), p. 235-243 / Harvested from The Polish Digital Mathematics Library

Let ℒ be a δ-lattice in a set X, and let ν be a measure on a sub-σ-algebra of σ(ℒ). It is shown that ν extends to an ℒ-regular measure on σ(ℒ) provided ν*|ℒ is σ-smooth at ∅ and ν*(L) = inf ν*(U)|X ∖ U ∈ ℒ, Usupset L for all L ∈ ℒ. Moreover, a Choquet type representation theorem is proved for the set of all such extensions.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283725
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-2-9,
     author = {Werner Rinkewitz},
     title = {Existence and integral representation of regular extensions of measures},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {235-243},
     zbl = {0984.28001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-2-9}
}
Werner Rinkewitz. Existence and integral representation of regular extensions of measures. Colloquium Mathematicae, Tome 89 (2001) pp. 235-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-2-9/