On supports of dynamical laminations and biaccessible points in polynomial Julia sets
Stanislav K. Smirnov
Colloquium Mathematicae, Tome 89 (2001), p. 287-295 / Harvested from The Polish Digital Mathematics Library

We use Beurling estimates and Zdunik's theorem to prove that the support of a lamination of the circle corresponding to a connected polynomial Julia set has zero length, unless f is conjugate to a Chebyshev polynomial. Equivalently, except for the Chebyshev case, the biaccessible points in the connected polynomial Julia set have zero harmonic measure.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283987
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-2-11,
     author = {Stanislav K. Smirnov},
     title = {On supports of dynamical laminations and biaccessible points in polynomial Julia sets},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {287-295},
     zbl = {1116.37309},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-2-11}
}
Stanislav K. Smirnov. On supports of dynamical laminations and biaccessible points in polynomial Julia sets. Colloquium Mathematicae, Tome 89 (2001) pp. 287-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-2-11/