Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal in Φ, if, for every prime ideal of A, there exists an integer k(), depending on , such that kills the general local cohomology module for every integer j less than a fixed integer n, where , then there exists an integer k such that for every j < n.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8,
author = {J. Asadollahi and K. Khashyarmanesh and Sh. Salarian},
title = {Local-global principle for annihilation of general local cohomology},
journal = {Colloquium Mathematicae},
volume = {89},
year = {2001},
pages = {129-136},
zbl = {0963.13014},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8}
}
J. Asadollahi; K. Khashyarmanesh; Sh. Salarian. Local-global principle for annihilation of general local cohomology. Colloquium Mathematicae, Tome 89 (2001) pp. 129-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8/