Local-global principle for annihilation of general local cohomology
J. Asadollahi ; K. Khashyarmanesh ; Sh. Salarian
Colloquium Mathematicae, Tome 89 (2001), p. 129-136 / Harvested from The Polish Digital Mathematics Library

Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal in Φ, if, for every prime ideal of A, there exists an integer k(), depending on , such that k() kills the general local cohomology module HΦj(M) for every integer j less than a fixed integer n, where Φ:=:Φ, then there exists an integer k such that kHΦj(M)=0 for every j < n.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283878
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8,
     author = {J. Asadollahi and K. Khashyarmanesh and Sh. Salarian},
     title = {Local-global principle for annihilation of general local cohomology},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {129-136},
     zbl = {0963.13014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8}
}
J. Asadollahi; K. Khashyarmanesh; Sh. Salarian. Local-global principle for annihilation of general local cohomology. Colloquium Mathematicae, Tome 89 (2001) pp. 129-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8/