Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal in Φ, if, for every prime ideal of A, there exists an integer k(), depending on , such that kills the general local cohomology module for every integer j less than a fixed integer n, where , then there exists an integer k such that for every j < n.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8, author = {J. Asadollahi and K. Khashyarmanesh and Sh. Salarian}, title = {Local-global principle for annihilation of general local cohomology}, journal = {Colloquium Mathematicae}, volume = {89}, year = {2001}, pages = {129-136}, zbl = {0963.13014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8} }
J. Asadollahi; K. Khashyarmanesh; Sh. Salarian. Local-global principle for annihilation of general local cohomology. Colloquium Mathematicae, Tome 89 (2001) pp. 129-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-8/