We give a sufficient condition for the existence of a Lyapunov function for the system aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0, , x ∈ Ω, t > 0, for , completed with either a = c = 0, or ∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0. Furthermore we study the asymptotic behaviour of the solution and give some uniform -estimates.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-7,
author = {Dirk Horstmann},
title = {Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems},
journal = {Colloquium Mathematicae},
volume = {89},
year = {2001},
pages = {113-127},
zbl = {0966.35022},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-7}
}
Dirk Horstmann. Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems. Colloquium Mathematicae, Tome 89 (2001) pp. 113-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-7/