We give a sufficient condition for the existence of a Lyapunov function for the system aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0, , x ∈ Ω, t > 0, for , completed with either a = c = 0, or ∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0. Furthermore we study the asymptotic behaviour of the solution and give some uniform -estimates.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-7, author = {Dirk Horstmann}, title = {Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems}, journal = {Colloquium Mathematicae}, volume = {89}, year = {2001}, pages = {113-127}, zbl = {0966.35022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-7} }
Dirk Horstmann. Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems. Colloquium Mathematicae, Tome 89 (2001) pp. 113-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-7/