We investigate the behaviour of a sequence , s = 1,2,..., of eigenvalues of the Dirichlet problem for the p-Laplacian in the domains , s = 1,2,..., obtained by removing from a given domain Ω a set whose diameter vanishes when s → ∞. We estimate the deviation of from the eigenvalue of the limit problem. For the derivation of our results we construct an appropriate asymptotic expansion for the sequence of solutions of the original eigenvalue problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-6, author = {M. Sango}, title = {Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole}, journal = {Colloquium Mathematicae}, volume = {89}, year = {2001}, pages = {103-111}, zbl = {0959.35058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-6} }
M. Sango. Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole. Colloquium Mathematicae, Tome 89 (2001) pp. 103-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-6/