Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole
M. Sango
Colloquium Mathematicae, Tome 89 (2001), p. 103-111 / Harvested from The Polish Digital Mathematics Library

We investigate the behaviour of a sequence λs, s = 1,2,..., of eigenvalues of the Dirichlet problem for the p-Laplacian in the domains Ωs, s = 1,2,..., obtained by removing from a given domain Ω a set Es whose diameter vanishes when s → ∞. We estimate the deviation of λs from the eigenvalue of the limit problem. For the derivation of our results we construct an appropriate asymptotic expansion for the sequence of solutions of the original eigenvalue problem.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283423
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-6,
     author = {M. Sango},
     title = {Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole},
     journal = {Colloquium Mathematicae},
     volume = {89},
     year = {2001},
     pages = {103-111},
     zbl = {0959.35058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-6}
}
M. Sango. Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole. Colloquium Mathematicae, Tome 89 (2001) pp. 103-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm87-1-6/