On twisted group algebras of OTP representation type over the ring of p-adic integers
Leonid F. Barannyk ; Dariusz Klein
Colloquium Mathematicae, Tome 144 (2016), p. 209-235 / Harvested from The Polish Digital Mathematics Library

Let ̂p be the ring of p-adic integers, U(̂p) the unit group of ̂p and G=Gp×B a finite group, where Gp is a p-group and B is a p’-group. Denote by ̂pλG the twisted group algebra of G over ̂p with a 2-cocycle λZ²(G,U(̂p)). We give necessary and sufficient conditions for ̂pλG to be of OTP representation type, in the sense that every indecomposable ̂pλG-module is isomorphic to the outer tensor product V W of an indecomposable ̂pλGp-module V and an irreducible ̂pλB-module W.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:283543
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6700-1-2016,
     author = {Leonid F. Barannyk and Dariusz Klein},
     title = {On twisted group algebras of OTP representation type over the ring of p-adic integers},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {209-235},
     zbl = {06574983},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6700-1-2016}
}
Leonid F. Barannyk; Dariusz Klein. On twisted group algebras of OTP representation type over the ring of p-adic integers. Colloquium Mathematicae, Tome 144 (2016) pp. 209-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6700-1-2016/