Let be the ring of p-adic integers, the unit group of and a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over with a 2-cocycle . We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module W.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6700-1-2016, author = {Leonid F. Barannyk and Dariusz Klein}, title = {On twisted group algebras of OTP representation type over the ring of p-adic integers}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {209-235}, zbl = {06574983}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6700-1-2016} }
Leonid F. Barannyk; Dariusz Klein. On twisted group algebras of OTP representation type over the ring of p-adic integers. Colloquium Mathematicae, Tome 144 (2016) pp. 209-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6700-1-2016/