We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6650-9-2015, author = {He Yuan and Liangyun Chen}, title = {Jordan superderivations and Jordan triple superderivations of superalgebras}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {229-243}, zbl = {06575002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6650-9-2015} }
He Yuan; Liangyun Chen. Jordan superderivations and Jordan triple superderivations of superalgebras. Colloquium Mathematicae, Tome 144 (2016) pp. 229-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6650-9-2015/