Hopf-Galois extensions for monoidal Hom-Hopf algebras are investigated. As the main result, Schneider's affineness theorem in the case of monoidal Hom-Hopf algebras is shown in terms of total integrals and Hopf-Galois extensions. In addition, we obtain an affineness criterion for relative Hom-Hopf modules which is associated with faithfully flat Hopf-Galois extensions of monoidal Hom-Hopf algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6615-12-2015, author = {Yuanyuan Chen and Liangyun Zhang}, title = {Hopf-Galois extensions for monoidal Hom-Hopf algebras}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {127-147}, zbl = {06545381}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6615-12-2015} }
Yuanyuan Chen; Liangyun Zhang. Hopf-Galois extensions for monoidal Hom-Hopf algebras. Colloquium Mathematicae, Tome 144 (2016) pp. 127-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6615-12-2015/