Quantum integrals associated to quantum Hom-Yetter-Drinfel’d modules are defined, and the affineness criterion for quantum Hom-Yetter-Drinfel’d modules is proved in the following form. Let (H,α) be a monoidal Hom-Hopf algebra, (A,β) an (H,α)-Hom-bicomodule algebra and . Under the assumption that there exists a total quantum integral γ: H → Hom(H,A) and the canonical map , , is surjective, we prove that the induction functor is an equivalence of categories.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6609-12-2015,
author = {Shuangjian Guo and Shengxiang Wang},
title = {The affineness criterion for quantum Hom-Yetter-Drinfel'd modules},
journal = {Colloquium Mathematicae},
volume = {144},
year = {2016},
pages = {169-185},
zbl = {06574980},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6609-12-2015}
}
Shuangjian Guo; Shengxiang Wang. The affineness criterion for quantum Hom-Yetter-Drinfel'd modules. Colloquium Mathematicae, Tome 144 (2016) pp. 169-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6609-12-2015/