Quantum integrals associated to quantum Hom-Yetter-Drinfel’d modules are defined, and the affineness criterion for quantum Hom-Yetter-Drinfel’d modules is proved in the following form. Let (H,α) be a monoidal Hom-Hopf algebra, (A,β) an (H,α)-Hom-bicomodule algebra and . Under the assumption that there exists a total quantum integral γ: H → Hom(H,A) and the canonical map , , is surjective, we prove that the induction functor is an equivalence of categories.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6609-12-2015, author = {Shuangjian Guo and Shengxiang Wang}, title = {The affineness criterion for quantum Hom-Yetter-Drinfel'd modules}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {169-185}, zbl = {06574980}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6609-12-2015} }
Shuangjian Guo; Shengxiang Wang. The affineness criterion for quantum Hom-Yetter-Drinfel'd modules. Colloquium Mathematicae, Tome 144 (2016) pp. 169-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6609-12-2015/