Irreducible polynomials with all but one zero close to the unit disk
DoYong Kwon
Colloquium Mathematicae, Tome 144 (2016), p. 265-270 / Harvested from The Polish Digital Mathematics Library

We consider a certain class of polynomials whose zeros are, all with one exception, close to the closed unit disk. We demonstrate that the Mahler measure can be employed to prove irreducibility of these polynomials over ℚ.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:284083
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6604-11-2015,
     author = {DoYong Kwon},
     title = {Irreducible polynomials with all but one zero close to the unit disk},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {265-270},
     zbl = {06574986},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6604-11-2015}
}
DoYong Kwon. Irreducible polynomials with all but one zero close to the unit disk. Colloquium Mathematicae, Tome 144 (2016) pp. 265-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6604-11-2015/