We consider a certain class of polynomials whose zeros are, all with one exception, close to the closed unit disk. We demonstrate that the Mahler measure can be employed to prove irreducibility of these polynomials over ℚ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6604-11-2015, author = {DoYong Kwon}, title = {Irreducible polynomials with all but one zero close to the unit disk}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {265-270}, zbl = {06574986}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6604-11-2015} }
DoYong Kwon. Irreducible polynomials with all but one zero close to the unit disk. Colloquium Mathematicae, Tome 144 (2016) pp. 265-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6604-11-2015/