With the help of recent adjacent dyadic constructions by Hytönen and the author, we give an alternative proof of results of Lechner, Müller and Passenbrunner about the -boundedness of shift operators acting on functions where 1 < p < ∞, X is a metric space and E is a UMD space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6594-11-2015,
author = {Olli Tapiola},
title = {Adjacent dyadic systems and the $L^{p}$-boundedness of shift operators in metric spaces revisited},
journal = {Colloquium Mathematicae},
volume = {144},
year = {2016},
pages = {121-135},
zbl = {06602775},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6594-11-2015}
}
Olli Tapiola. Adjacent dyadic systems and the $L^{p}$-boundedness of shift operators in metric spaces revisited. Colloquium Mathematicae, Tome 144 (2016) pp. 121-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6594-11-2015/