Adjacent dyadic systems and the Lp-boundedness of shift operators in metric spaces revisited
Olli Tapiola
Colloquium Mathematicae, Tome 144 (2016), p. 121-135 / Harvested from The Polish Digital Mathematics Library

With the help of recent adjacent dyadic constructions by Hytönen and the author, we give an alternative proof of results of Lechner, Müller and Passenbrunner about the Lp-boundedness of shift operators acting on functions fLp(X;E) where 1 < p < ∞, X is a metric space and E is a UMD space.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286538
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6594-11-2015,
     author = {Olli Tapiola},
     title = {Adjacent dyadic systems and the $L^{p}$-boundedness of shift operators in metric spaces revisited},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {121-135},
     zbl = {06602775},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6594-11-2015}
}
Olli Tapiola. Adjacent dyadic systems and the $L^{p}$-boundedness of shift operators in metric spaces revisited. Colloquium Mathematicae, Tome 144 (2016) pp. 121-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6594-11-2015/