Approximation in weighted generalized grand Lebesgue spaces
Daniyal M. Israfilov ; Ahmet Testici
Colloquium Mathematicae, Tome 144 (2016), p. 113-126 / Harvested from The Polish Digital Mathematics Library

The direct and inverse problems of approximation theory in the subspace of weighted generalized grand Lebesgue spaces of 2π-periodic functions with the weights satisfying Muckenhoupt's condition are investigated. Appropriate direct and inverse theorems are proved. As a corollary some results on constructive characterization problems in generalized Lipschitz classes are presented.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:283706
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6555-12-2015,
     author = {Daniyal M. Israfilov and Ahmet Testici},
     title = {Approximation in weighted generalized grand Lebesgue spaces},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {113-126},
     zbl = {1339.41007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6555-12-2015}
}
Daniyal M. Israfilov; Ahmet Testici. Approximation in weighted generalized grand Lebesgue spaces. Colloquium Mathematicae, Tome 144 (2016) pp. 113-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6555-12-2015/