We introduce the concept of relative Hom-Hopf modules and investigate their structure in a monoidal category . More particularly, the fundamental theorem for relative Hom-Hopf modules is proved under the assumption that the Hom-comodule algebra is cleft. Moreover, Maschke’s theorem for relative Hom-Hopf modules is established when there is a multiplicative total Hom-integral.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6514-11-2015, author = {Yuanyuan Chen and Zhongwei Wang and Liangyun Zhang}, title = {The fundamental theorem and Maschke's theorem in the category of relative Hom-Hopf modules}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {55-71}, zbl = {06574991}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6514-11-2015} }
Yuanyuan Chen; Zhongwei Wang; Liangyun Zhang. The fundamental theorem and Maschke's theorem in the category of relative Hom-Hopf modules. Colloquium Mathematicae, Tome 144 (2016) pp. 55-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6514-11-2015/