A note on representation functions with different weights
Zhenhua Qu
Colloquium Mathematicae, Tome 144 (2016), p. 105-112 / Harvested from The Polish Digital Mathematics Library

For any positive integer k and any set A of nonnegative integers, let r1,k(A,n) denote the number of solutions (a₁,a₂) of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. Let k,l ≥ 2 be two distinct integers. We prove that there exists a set A ⊆ ℕ such that both r1,k(A,n)=r1,k(A,n) and r1,l(A,n)=r1,l(A,n) hold for all n ≥ n₀ if and only if log k/log l = a/b for some odd positive integers a,b, disproving a conjecture of Yang. We also show that for any set A ⊆ ℕ satisfying r1,k(A,n)=r1,k(A,n) for all n ≥ n₀, we have r1,k(A,n) as n → ∞.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:283601
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6512-12-2015,
     author = {Zhenhua Qu},
     title = {A note on representation functions with different weights},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {105-112},
     zbl = {06545379},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6512-12-2015}
}
Zhenhua Qu. A note on representation functions with different weights. Colloquium Mathematicae, Tome 144 (2016) pp. 105-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6512-12-2015/