Modules which are invariant under idempotents of their envelopes
Le Van Thuyet ; Phan Dan ; Truong Cong Quynh
Colloquium Mathematicae, Tome 144 (2016), p. 237-250 / Harvested from The Polish Digital Mathematics Library

We study the class of modules which are invariant under idempotents of their envelopes. We say that a module M is -idempotent-invariant if there exists an -envelope u : M → X such that for any idempotent g ∈ End(X) there exists an endomorphism f : M → M such that uf = gu. The properties of this class of modules are discussed. We prove that M is -idempotent-invariant if and only if for every decomposition X=iIXi, we have M=iI(u-1(Xi)M). Moreover, some generalizations of -idempotent-invariant modules are considered.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:283540
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6496-1-2016,
     author = {Le Van Thuyet and Phan Dan and Truong Cong Quynh},
     title = {Modules which are invariant under idempotents of their envelopes},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {237-250},
     zbl = {06574984},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6496-1-2016}
}
Le Van Thuyet; Phan Dan; Truong Cong Quynh. Modules which are invariant under idempotents of their envelopes. Colloquium Mathematicae, Tome 144 (2016) pp. 237-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6496-1-2016/