We obtain estimates for the average value of the largest prime factor P(n) in short intervals [x,x+y] and of h(P(n)+1), where h is a complex-valued additive function or multiplicative function satisfying certain conditions. Letting stand for the sum of the digits of n in base q ≥ 2, we show that if α is an irrational number, then the sequence is uniformly distributed modulo 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm6474-12-2015, author = {Jean-Marie De Koninck and Imre K\'atai}, title = {Shifted values of the largest prime factor function and its average value in short intervals}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {39-62}, zbl = {06545376}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6474-12-2015} }
Jean-Marie De Koninck; Imre Kátai. Shifted values of the largest prime factor function and its average value in short intervals. Colloquium Mathematicae, Tome 144 (2016) pp. 39-62. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm6474-12-2015/