Axial permutations of ω²
Paweł Klinga
Colloquium Mathematicae, Tome 144 (2016), p. 267-273 / Harvested from The Polish Digital Mathematics Library

We prove that every permutation of ω² is a composition of a finite number of axial permutations, where each axial permutation moves only a finite number of elements on each axis.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:283464
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-7,
     author = {Pawe\l\ Klinga},
     title = {Axial permutations of $\omega$$^2$},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {267-273},
     zbl = {1331.03033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-7}
}
Paweł Klinga. Axial permutations of ω². Colloquium Mathematicae, Tome 144 (2016) pp. 267-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-7/