Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that and , where is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-4, author = {Carnot D. Kenfack and Beno\^\i t F. Sehba}, title = {Maximal function and Carleson measures in the theory of B\'ekoll\'e-Bonami weights}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {211-226}, zbl = {1334.42041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-4} }
Carnot D. Kenfack; Benoît F. Sehba. Maximal function and Carleson measures in the theory of Békollé-Bonami weights. Colloquium Mathematicae, Tome 144 (2016) pp. 211-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-4/