Maximal function and Carleson measures in the theory of Békollé-Bonami weights
Carnot D. Kenfack ; Benoît F. Sehba
Colloquium Mathematicae, Tome 144 (2016), p. 211-226 / Harvested from The Polish Digital Mathematics Library

Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that |Mωf(z)|qdμ(z)C(|f(z)|pω(z)dV(z))q/p and μ(z:Mf(z)>λ)C/(λq)(|f(z)|pω(z)dV(z))q/p, where Mω is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286345
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-4,
     author = {Carnot D. Kenfack and Beno\^\i t F. Sehba},
     title = {Maximal function and Carleson measures in the theory of B\'ekoll\'e-Bonami weights},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {211-226},
     zbl = {1334.42041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-4}
}
Carnot D. Kenfack; Benoît F. Sehba. Maximal function and Carleson measures in the theory of Békollé-Bonami weights. Colloquium Mathematicae, Tome 144 (2016) pp. 211-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-4/