On the relation between maximal rigid objects and τ-tilting modules
Pin Liu ; Yunli Xie
Colloquium Mathematicae, Tome 144 (2016), p. 169-178 / Harvested from The Polish Digital Mathematics Library

This note compares τ-tilting modules and maximal rigid objects in the context of 2-Calabi-Yau triangulated categories. Let be a 2-Calabi-Yau triangulated category with suspension functor S. Let R be a maximal rigid object in and let Γ be the endomorphism algebra of R. Let F be the functor Hom(R,-):modΓ. We prove that any τ-tilting module over Γ lifts uniquely to a maximal rigid object in via F, and in turn, that projection from to mod Γ sends the maximal rigid objects which have no direct summands from add SR to τ-tilting Γ-modules, and in general, that the Γ-modules corresponding to the maximal rigid objects are the support τ-tilting modules.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286194
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-2,
     author = {Pin Liu and Yunli Xie},
     title = {On the relation between maximal rigid objects and $\tau$-tilting modules},
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {169-178},
     zbl = {06498813},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-2}
}
Pin Liu; Yunli Xie. On the relation between maximal rigid objects and τ-tilting modules. Colloquium Mathematicae, Tome 144 (2016) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-2-2/