Let N ≥ 2 be a given integer. Suppose that is a martingale difference sequence with values in and let be a deterministic sequence of signs. The paper contains the proof of the estimate . It is shown that this result is asymptotically sharp in the sense that the least constant in the above estimate satisfies . The novelty in the proof is the explicit verification of the ζ-convexity of the space .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-7, author = {Adam Os\k ekowski}, title = {On the UMD constant of the space $l1^{N}$ }, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {135-147}, zbl = {06497303}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-7} }
Adam Osękowski. On the UMD constant of the space $ℓ₁^{N}$ . Colloquium Mathematicae, Tome 144 (2016) pp. 135-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-7/