On the UMD constant of the space N
Adam Osękowski
Colloquium Mathematicae, Tome 144 (2016), p. 135-147 / Harvested from The Polish Digital Mathematics Library

Let N ≥ 2 be a given integer. Suppose that df=(df)n0 is a martingale difference sequence with values in N and let (ε)n0 be a deterministic sequence of signs. The paper contains the proof of the estimate (supn0||k=0nεkdfk||N1)(lnN+ln(3lnN))/(1-(2lnN)-1)supn0||k=0ndfk||N. It is shown that this result is asymptotically sharp in the sense that the least constant CN in the above estimate satisfies limNCN/lnN=1. The novelty in the proof is the explicit verification of the ζ-convexity of the space N.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:283650
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-7,
     author = {Adam Os\k ekowski},
     title = {On the UMD constant of the space $l1^{N}$
            },
     journal = {Colloquium Mathematicae},
     volume = {144},
     year = {2016},
     pages = {135-147},
     zbl = {06497303},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-7}
}
Adam Osękowski. On the UMD constant of the space $ℓ₁^{N}$
            . Colloquium Mathematicae, Tome 144 (2016) pp. 135-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-7/