Subspaces of Toeplitz operators on the Hardy spaces over a multiply connected region in the complex plane are investigated. A universal covering map of such a region and the group of automorphisms invariant with respect to the covering map connect the Hardy space on this multiply connected region with a certain subspace of the classical Hardy space on the disc. We also present some connections of Toeplitz operators on both spaces from the reflexivity point of view.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-4, author = {Wojciech M\l ocek and Marek Ptak}, title = {Reflexivity of Toeplitz operators in multiply connected regions}, journal = {Colloquium Mathematicae}, volume = {144}, year = {2016}, pages = {83-97}, zbl = {06497300}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-4} }
Wojciech Młocek; Marek Ptak. Reflexivity of Toeplitz operators in multiply connected regions. Colloquium Mathematicae, Tome 144 (2016) pp. 83-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm142-1-4/