Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let and be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of . As a corollary, we find that if and only if if and only if .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-2-4, author = {Xinhong Chen and Ming Lu}, title = {Singularity categories of skewed-gentle algebras}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {183-198}, zbl = {06487237}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-2-4} }
Xinhong Chen; Ming Lu. Singularity categories of skewed-gentle algebras. Colloquium Mathematicae, Tome 139 (2015) pp. 183-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-2-4/