Singularity categories of skewed-gentle algebras
Xinhong Chen ; Ming Lu
Colloquium Mathematicae, Tome 139 (2015), p. 183-198 / Harvested from The Polish Digital Mathematics Library

Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let (Qsg,Isg) and (Qg,Ig) be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra KQsg/Isg is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of KQg/Ig. As a corollary, we find that gldimKQsg/Isg< if and only if gldimKQ/I< if and only if gldimKQg/Ig<.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283798
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-2-4,
     author = {Xinhong Chen and Ming Lu},
     title = {Singularity categories of skewed-gentle algebras},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {183-198},
     zbl = {06487237},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-2-4}
}
Xinhong Chen; Ming Lu. Singularity categories of skewed-gentle algebras. Colloquium Mathematicae, Tome 139 (2015) pp. 183-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-2-4/