Lie derivations of dual extensions of algebras
Yanbo Li ; Feng Wei
Colloquium Mathematicae, Tome 139 (2015), p. 65-82 / Harvested from The Polish Digital Mathematics Library

Let K be a field and Γ a finite quiver without oriented cycles. Let Λ := K(Γ,ρ) be the quotient algebra of the path algebra KΓ by the ideal generated by ρ, and let 𝒟(Λ) be the dual extension of Λ. We prove that each Lie derivation of 𝒟(Λ) is of the standard form.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286450
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-1-7,
     author = {Yanbo Li and Feng Wei},
     title = {Lie derivations of dual extensions of algebras},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {65-82},
     zbl = {1334.16041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-1-7}
}
Yanbo Li; Feng Wei. Lie derivations of dual extensions of algebras. Colloquium Mathematicae, Tome 139 (2015) pp. 65-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-1-7/