For each vector v we define the notion of a v-positive type for infinite-measure-preserving transformations, a refinement of positive type as introduced by Hajian and Kakutani. We prove that a positive type transformation need not be (1,2)-positive type. We study this notion in the context of Markov shifts and multiple recurrence, and give several examples.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-1, author = {Tudor P\u adurariu and Cesar E. Silva and Evangelie Zachos}, title = {On v-positive type transformations in infinite measure}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {149-170}, zbl = {06456780}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-1} }
Tudor Pădurariu; Cesar E. Silva; Evangelie Zachos. On v-positive type transformations in infinite measure. Colloquium Mathematicae, Tome 139 (2015) pp. 149-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-1/