For each vector v we define the notion of a v-positive type for infinite-measure-preserving transformations, a refinement of positive type as introduced by Hajian and Kakutani. We prove that a positive type transformation need not be (1,2)-positive type. We study this notion in the context of Markov shifts and multiple recurrence, and give several examples.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-1,
author = {Tudor P\u adurariu and Cesar E. Silva and Evangelie Zachos},
title = {On v-positive type transformations in infinite measure},
journal = {Colloquium Mathematicae},
volume = {139},
year = {2015},
pages = {149-170},
zbl = {06456780},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-1}
}
Tudor Pădurariu; Cesar E. Silva; Evangelie Zachos. On v-positive type transformations in infinite measure. Colloquium Mathematicae, Tome 139 (2015) pp. 149-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-1/