On the distance between generalized Fibonacci numbers
Jhon J. Bravo ; Carlos A. Gómez ; Florian Luca
Colloquium Mathematicae, Tome 139 (2015), p. 107-118 / Harvested from The Polish Digital Mathematics Library

For an integer k ≥ 2, let (F(k)) be the k-Fibonacci sequence which starts with 0,..., 0,1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283453
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-9,
     author = {Jhon J. Bravo and Carlos A. G\'omez and Florian Luca},
     title = {On the distance between generalized Fibonacci numbers},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {107-118},
     zbl = {1339.11011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-9}
}
Jhon J. Bravo; Carlos A. Gómez; Florian Luca. On the distance between generalized Fibonacci numbers. Colloquium Mathematicae, Tome 139 (2015) pp. 107-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-9/