New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs
Ernest X. W. Xia
Colloquium Mathematicae, Tome 139 (2015), p. 91-105 / Harvested from The Polish Digital Mathematics Library

Let pp¯(n) denote the number of overpartition pairs of n. Bringmann and Lovejoy (2008) proved that for n ≥ 0, pp¯(3n+2)0(mod3). They also proved that there are infinitely many Ramanujan-type congruences modulo every power of odd primes for pp¯(n). Recently, Chen and Lin (2012) established some Ramanujan-type identities and explicit congruences for pp¯(n). Furthermore, they also constructed infinite families of congruences for pp¯(n) modulo 3 and 5, and two congruence relations modulo 9. In this paper, we prove several new infinite families of congruences modulo 9 for pp¯(n). For example, we find that for all integers k,n ≥ 0, pp¯(26k(48n+20))pp¯(26k(384n+32))pp¯(23k(48n+36))0(mod9).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286142
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-8,
     author = {Ernest X. W. Xia},
     title = {New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {91-105},
     zbl = {1327.11074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-8}
}
Ernest X. W. Xia. New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs. Colloquium Mathematicae, Tome 139 (2015) pp. 91-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-8/