The defocusing energy-critical Klein-Gordon-Hartree equation
Qianyun Miao ; Jiqiang Zheng
Colloquium Mathematicae, Tome 139 (2015), p. 31-58 / Harvested from The Polish Digital Mathematics Library

We study the scattering theory for the defocusing energy-critical Klein-Gordon equation with a cubic convolution utt-Δu+u+(|x|-4|u|²)u=0 in spatial dimension d ≥ 5. We utilize the strategy of Ibrahim et al. (2011) derived from concentration compactness ideas to show that the proof of the global well-posedness and scattering can be reduced to disproving the existence of a soliton-like solution. Employing the technique of Pausader (2010), we consider a virial-type identity in the direction orthogonal to the momentum vector to exclude such a solution.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283530
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-4,
     author = {Qianyun Miao and Jiqiang Zheng},
     title = {The defocusing energy-critical Klein-Gordon-Hartree equation},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {31-58},
     zbl = {1327.35182},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-4}
}
Qianyun Miao; Jiqiang Zheng. The defocusing energy-critical Klein-Gordon-Hartree equation. Colloquium Mathematicae, Tome 139 (2015) pp. 31-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-4/