Multiparameter ergodic Cesàro-α averages
A. L. Bernardis ; R. Crescimbeni ; C. Ferrari Freire
Colloquium Mathematicae, Tome 139 (2015), p. 15-29 / Harvested from The Polish Digital Mathematics Library

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on Lp(ν), T,...,Tk, n̅=(n,...,nk)k and α̅=(α,...,αk) with 0<αj1, we define the ergodic Cesàro-α̅ averages n̅,α̅f=1/(j=1kAnjαj)ik=0nki=0nj=1kAnj-ijαj-1TkikTif. For these averages we prove the almost everywhere convergence on X and the convergence in the Lp(ν) norm, when n,...,nk independently, for all fLp(dν) with p > 1/α⁎ where α=min1jkαj. In the limit case p = 1/α⁎, we prove that the averages n̅,α̅f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ(1/α,φm-1) with φ(t)=t(1+logt)m. To obtain the result in the limit case we need to study inequalities for the composition of operators Ti that are of restricted weak type (pi,pi). As another application of these inequalities we also study the strong Cesàro-α̅ continuity of functions.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:284060
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-3,
     author = {A. L. Bernardis and R. Crescimbeni and C. Ferrari Freire},
     title = {Multiparameter ergodic Ces\`aro-$\alpha$ averages},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {15-29},
     zbl = {1323.47005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-3}
}
A. L. Bernardis; R. Crescimbeni; C. Ferrari Freire. Multiparameter ergodic Cesàro-α averages. Colloquium Mathematicae, Tome 139 (2015) pp. 15-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-3/