Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on , , and with , we define the ergodic Cesàro-α̅ averages . For these averages we prove the almost everywhere convergence on X and the convergence in the norm, when independently, for all with p > 1/α⁎ where . In the limit case p = 1/α⁎, we prove that the averages converge almost everywhere on X for all f in the Orlicz-Lorentz space with . To obtain the result in the limit case we need to study inequalities for the composition of operators that are of restricted weak type . As another application of these inequalities we also study the strong Cesàro-α̅ continuity of functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-3, author = {A. L. Bernardis and R. Crescimbeni and C. Ferrari Freire}, title = {Multiparameter ergodic Ces\`aro-$\alpha$ averages}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {15-29}, zbl = {1323.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-3} }
A. L. Bernardis; R. Crescimbeni; C. Ferrari Freire. Multiparameter ergodic Cesàro-α averages. Colloquium Mathematicae, Tome 139 (2015) pp. 15-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-3/