A note on p-adic valuations of Schenker sums
Piotr Miska
Colloquium Mathematicae, Tome 139 (2015), p. 5-13 / Harvested from The Polish Digital Mathematics Library

A prime number p is called a Schenker prime if there exists n ∈ ℕ₊ such that p∤n and p|aₙ, where a=j=0n(n!/j!)nj is a so-called Schenker sum. T. Amdeberhan, D. Callan and V. Moll formulated two conjectures concerning p-adic valuations of aₙ when p is a Schenker prime. In particular, they conjectured that for each k ∈ ℕ₊ there exists a unique positive integer nk<5k such that v(am·5k+nk)k for each nonnegative integer m. We prove that for every k ∈ ℕ₊ the inequality v₅(aₙ) ≥ k has exactly one solution modulo 5k. This confirms the above conjecture. Moreover, we show that if 37∤n then v37(a)1, which disproves the other conjecture of the above mentioned authors.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286349
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-2,
     author = {Piotr Miska},
     title = {A note on p-adic valuations of Schenker sums},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {5-13},
     zbl = {06440586},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-2}
}
Piotr Miska. A note on p-adic valuations of Schenker sums. Colloquium Mathematicae, Tome 139 (2015) pp. 5-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-2/