We give an elementary proof for the case of the circle group of the theorem of O. Hatori and E. Sato, which states that every measure on a compact abelian group G can be decomposed into a sum of two measures with a natural spectrum and a discrete measure.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-1, author = {Przemys\l aw Ohrysko}, title = {An elementary proof of the decomposition of measures on the circle group}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {1-4}, zbl = {1323.43001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-1} }
Przemysław Ohrysko. An elementary proof of the decomposition of measures on the circle group. Colloquium Mathematicae, Tome 139 (2015) pp. 1-4. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-1-1/