Turán's problem and Ramsey numbers for trees
Zhi-Hong Sun ; Lin-Lin Wang ; Yi-Li Wu
Colloquium Mathematicae, Tome 139 (2015), p. 273-298 / Harvested from The Polish Digital Mathematics Library

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V=v,v,...,vn-1, E=vv,...,vvn-3,vn-4vn-2,vn-3vn-1 and E=vv,...,vvn-3,vn-3vn-2,vn-3vn-1. For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r(T,Ti), where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:284134
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-8,
     author = {Zhi-Hong Sun and Lin-Lin Wang and Yi-Li Wu},
     title = {Tur\'an's problem and Ramsey numbers for trees},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {273-298},
     zbl = {1312.05089},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-8}
}
Zhi-Hong Sun; Lin-Lin Wang; Yi-Li Wu. Turán's problem and Ramsey numbers for trees. Colloquium Mathematicae, Tome 139 (2015) pp. 273-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-8/