Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with , and . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-8, author = {Zhi-Hong Sun and Lin-Lin Wang and Yi-Li Wu}, title = {Tur\'an's problem and Ramsey numbers for trees}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {273-298}, zbl = {1312.05089}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-8} }
Zhi-Hong Sun; Lin-Lin Wang; Yi-Li Wu. Turán's problem and Ramsey numbers for trees. Colloquium Mathematicae, Tome 139 (2015) pp. 273-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-8/