We introduce the notions of asymptotic period and asymptotically periodic orbits in metric spaces. We study some properties of these notions and their connections with ω-limit sets. We also discuss the notion of growth rate of such orbits and describe its properties in an extreme case.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-6, author = {Karol Gryszka}, title = {Asymptotic period in dynamical systems in metric spaces}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {245-257}, zbl = {06424827}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-6} }
Karol Gryszka. Asymptotic period in dynamical systems in metric spaces. Colloquium Mathematicae, Tome 139 (2015) pp. 245-257. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-6/