On the global existence for a regularized model of viscoelastic non-Newtonian fluid
Ondřej Kreml ; Milan Pokorný ; Pavel Šalom
Colloquium Mathematicae, Tome 139 (2015), p. 149-163 / Harvested from The Polish Digital Mathematics Library

We study the generalized Oldroyd model with viscosity depending on the shear stress behaving like μ(D)|D|p-2 (p > 6/5), regularized by a nonlinear stress diffusion. Using the Lipschitz truncation method we prove global existence of a weak solution to the corresponding system of partial differential equations.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283497
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-1,
     author = {Ond\v rej Kreml and Milan Pokorn\'y and Pavel \v Salom},
     title = {On the global existence for a regularized model of viscoelastic non-Newtonian fluid},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {149-163},
     zbl = {1316.35242},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-1}
}
Ondřej Kreml; Milan Pokorný; Pavel Šalom. On the global existence for a regularized model of viscoelastic non-Newtonian fluid. Colloquium Mathematicae, Tome 139 (2015) pp. 149-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-1/