We study the generalized Oldroyd model with viscosity depending on the shear stress behaving like (p > 6/5), regularized by a nonlinear stress diffusion. Using the Lipschitz truncation method we prove global existence of a weak solution to the corresponding system of partial differential equations.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-1, author = {Ond\v rej Kreml and Milan Pokorn\'y and Pavel \v Salom}, title = {On the global existence for a regularized model of viscoelastic non-Newtonian fluid}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {149-163}, zbl = {1316.35242}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-1} }
Ondřej Kreml; Milan Pokorný; Pavel Šalom. On the global existence for a regularized model of viscoelastic non-Newtonian fluid. Colloquium Mathematicae, Tome 139 (2015) pp. 149-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-2-1/