Let m be a positive integer. Using an upper bound for the solutions of generalized Ramanujan-Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove that if 3 ∤ m, then the equation has only the positive integer solution (x,y,z) = (1,1,2).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-7, author = {Jianping Wang and Tingting Wang and Wenpeng Zhang}, title = {A note on the exponential Diophantine equation $(4m$^2$+1)^x + (5m$^2$-1)^y = (3m)^z$ }, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {121-126}, zbl = {06419986}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-7} }
Jianping Wang; Tingting Wang; Wenpeng Zhang. A note on the exponential Diophantine equation $(4m²+1)^x + (5m²-1)^y = (3m)^z$ . Colloquium Mathematicae, Tome 139 (2015) pp. 121-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-7/