Let m be a positive integer. Using an upper bound for the solutions of generalized Ramanujan-Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove that if 3 ∤ m, then the equation has only the positive integer solution (x,y,z) = (1,1,2).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-7,
author = {Jianping Wang and Tingting Wang and Wenpeng Zhang},
title = {A note on the exponential Diophantine equation $(4m$^2$+1)^x + (5m$^2$-1)^y = (3m)^z$
},
journal = {Colloquium Mathematicae},
volume = {139},
year = {2015},
pages = {121-126},
zbl = {06419986},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-7}
}
Jianping Wang; Tingting Wang; Wenpeng Zhang. A note on the exponential Diophantine equation $(4m²+1)^x + (5m²-1)^y = (3m)^z$
. Colloquium Mathematicae, Tome 139 (2015) pp. 121-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-7/