Cohomological dimension filtration and annihilators of top local cohomology modules
Ali Atazadeh ; Monireh Sedghi ; Reza Naghipour
Colloquium Mathematicae, Tome 139 (2015), p. 25-35 / Harvested from The Polish Digital Mathematics Library

Let denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration =Mii=0c, where c = cd(,M) and Mi denotes the largest submodule of M such that cd(,Mi)i. Some properties of this filtration are investigated. In particular, if (R,) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module Hc(M), namely AnnR(Hc(M))=AnnR(M/Mc-1). As a consequence, there exists an ideal of R such that AnnR(Hc(M))=AnnR(M/H(M)). This generalizes the main results of Bahmanpour et al. (2012) and Lynch (2012).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:284334
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-2,
     author = {Ali Atazadeh and Monireh Sedghi and Reza Naghipour},
     title = {Cohomological dimension filtration and annihilators of top local cohomology modules},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {25-35},
     zbl = {1314.13033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-2}
}
Ali Atazadeh; Monireh Sedghi; Reza Naghipour. Cohomological dimension filtration and annihilators of top local cohomology modules. Colloquium Mathematicae, Tome 139 (2015) pp. 25-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm139-1-2/