Representation numbers of five sextenary quadratic forms
Ernest X. W. Xia ; Olivia X. M. Yao ; A. F. Y. Zhao
Colloquium Mathematicae, Tome 139 (2015), p. 247-254 / Harvested from The Polish Digital Mathematics Library

For nonnegative integers a, b, c and positive integer n, let N(a,b,c;n) denote the number of representations of n by the form i=1a(x²i+xiyi+y²i)+2j=1b(u²j+ujvj+v²j)+4k=1c(r²k+rksk+s²k). Explicit formulas for N(a,b,c;n) for some small values were determined by Alaca, Alaca and Williams, by Chan and Cooper, by Köklüce, and by Lomadze. We establish formulas for N(2,1,0;n), N(2,0,1;n), N(1,2,0;n), N(1,0,2;n) and N(1,1,1;n) by employing the (p, k)-parametrization of three 2-dimensional theta functions due to Alaca, Alaca and Williams.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:284018
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-9,
     author = {Ernest X. W. Xia and Olivia X. M. Yao and A. F. Y. Zhao},
     title = {Representation numbers of five sextenary quadratic forms},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {247-254},
     zbl = {06401029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-9}
}
Ernest X. W. Xia; Olivia X. M. Yao; A. F. Y. Zhao. Representation numbers of five sextenary quadratic forms. Colloquium Mathematicae, Tome 139 (2015) pp. 247-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-9/