For nonnegative integers a, b, c and positive integer n, let N(a,b,c;n) denote the number of representations of n by the form . Explicit formulas for N(a,b,c;n) for some small values were determined by Alaca, Alaca and Williams, by Chan and Cooper, by Köklüce, and by Lomadze. We establish formulas for N(2,1,0;n), N(2,0,1;n), N(1,2,0;n), N(1,0,2;n) and N(1,1,1;n) by employing the (p, k)-parametrization of three 2-dimensional theta functions due to Alaca, Alaca and Williams.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-9, author = {Ernest X. W. Xia and Olivia X. M. Yao and A. F. Y. Zhao}, title = {Representation numbers of five sextenary quadratic forms}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {247-254}, zbl = {06401029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-9} }
Ernest X. W. Xia; Olivia X. M. Yao; A. F. Y. Zhao. Representation numbers of five sextenary quadratic forms. Colloquium Mathematicae, Tome 139 (2015) pp. 247-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-9/