On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers
Zahra Heidarian ; Hossein Zakeri
Colloquium Mathematicae, Tome 139 (2015), p. 217-231 / Harvested from The Polish Digital Mathematics Library

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex HomR̂((,R̂),M) is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283414
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-6,
     author = {Zahra Heidarian and Hossein Zakeri},
     title = {On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {217-231},
     zbl = {1326.13006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-6}
}
Zahra Heidarian; Hossein Zakeri. On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers. Colloquium Mathematicae, Tome 139 (2015) pp. 217-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-6/