The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-6,
author = {Zahra Heidarian and Hossein Zakeri},
title = {On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers},
journal = {Colloquium Mathematicae},
volume = {139},
year = {2015},
pages = {217-231},
zbl = {1326.13006},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-6}
}
Zahra Heidarian; Hossein Zakeri. On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers. Colloquium Mathematicae, Tome 139 (2015) pp. 217-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-6/