Fuglede-Putnam theorem for class A operators
Salah Mecheri
Colloquium Mathematicae, Tome 139 (2015), p. 183-191 / Harvested from The Polish Digital Mathematics Library

Let A ∈ B(H) and B ∈ B(K). We say that A and B satisfy the Fuglede-Putnam theorem if AX = XB for some X ∈ B(K,H) implies A*X = XB*. Patel et al. (2006) showed that the Fuglede-Putnam theorem holds for class A(s,t) operators with s + t < 1 and they mentioned that the case s = t = 1 is still an open problem. In the present article we give a partial positive answer to this problem. We show that if A ∈ B(H) is a class A operator with reducing kernel and B* ∈ B(K) is a class 𝓨 operator, and AX = XB for some X ∈ B(K,H), then A*X = XB*.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283796
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-3,
     author = {Salah Mecheri},
     title = {Fuglede-Putnam theorem for class A operators},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {183-191},
     zbl = {06401023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-3}
}
Salah Mecheri. Fuglede-Putnam theorem for class A operators. Colloquium Mathematicae, Tome 139 (2015) pp. 183-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-3/