The periodicity conjecture for blocks of group algebras
Karin Erdmann ; Andrzej Skowroński
Colloquium Mathematicae, Tome 139 (2015), p. 283-294 / Harvested from The Polish Digital Mathematics Library

We describe the representation-infinite blocks B of the group algebras KG of finite groups G over algebraically closed fields K for which all simple modules are periodic with respect to the action of the syzygy operators. In particular, we prove that all such blocks B are periodic algebras of period 4. This confirms the periodicity conjecture for blocks of group algebras.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283786
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12,
     author = {Karin Erdmann and Andrzej Skowro\'nski},
     title = {The periodicity conjecture for blocks of group algebras},
     journal = {Colloquium Mathematicae},
     volume = {139},
     year = {2015},
     pages = {283-294},
     zbl = {1323.16004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12}
}
Karin Erdmann; Andrzej Skowroński. The periodicity conjecture for blocks of group algebras. Colloquium Mathematicae, Tome 139 (2015) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12/