We describe the representation-infinite blocks B of the group algebras KG of finite groups G over algebraically closed fields K for which all simple modules are periodic with respect to the action of the syzygy operators. In particular, we prove that all such blocks B are periodic algebras of period 4. This confirms the periodicity conjecture for blocks of group algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12,
author = {Karin Erdmann and Andrzej Skowro\'nski},
title = {The periodicity conjecture for blocks of group algebras},
journal = {Colloquium Mathematicae},
volume = {139},
year = {2015},
pages = {283-294},
zbl = {1323.16004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12}
}
Karin Erdmann; Andrzej Skowroński. The periodicity conjecture for blocks of group algebras. Colloquium Mathematicae, Tome 139 (2015) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12/