We describe the representation-infinite blocks B of the group algebras KG of finite groups G over algebraically closed fields K for which all simple modules are periodic with respect to the action of the syzygy operators. In particular, we prove that all such blocks B are periodic algebras of period 4. This confirms the periodicity conjecture for blocks of group algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12, author = {Karin Erdmann and Andrzej Skowro\'nski}, title = {The periodicity conjecture for blocks of group algebras}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {283-294}, zbl = {1323.16004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12} }
Karin Erdmann; Andrzej Skowroński. The periodicity conjecture for blocks of group algebras. Colloquium Mathematicae, Tome 139 (2015) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12/